

паспорт технический KANN серии PRO

Станция биологической очистки бытовых сточных вод

Уважаемый покупатель, поздравляем с приобретением станции биологической очистки **KANN серии PRO**. Наша компания благодарит Вас за доверие и гарантирует высокое качество изделия.

С уважением, коллектив ООО «КАНТЕХПРО»

СОДЕРЖАНИЕ

Модельный ряд СБО KANN серии PRO	. 4
1. Общие сведения и назначение	. 4
2. Принцип работы станции	. 5
3. Основные параметры и характеристики	. 6
3.1. Подбор модели станции модельного ряда KANN серии PRO	. 6
3.2. Технические характеристики	. 7
3.3. Варианты отведения очищенной воды	. 7
4. Инструкция по монтажу	. 8
4.1. Монтаж станций KANN серии PRO	
4.2. Монтажная схема станции KANN серии PRO	.12
4.3. Особенности монтажа станций при высоком уровне грунтовых вод	. 12
4.4. Подключение станций к канализационной сети	.13
5. Ввод станции в эксплуатацию	14
5.1. Общие положения	.14
5.2. Настройка станции	. 14
5.3. Настройка работы станции по качеству воды	. 15
6. Особенности зимней эксплуатации станции	.16
6.1. «Консервация» на зимний период	16
7. Рекомендации по эксплуатации станции	. 17
8. Техническое обслуживание	. 19
Гарантийные обязательства	.20
Гарантийный сертификат	21
Протокол испытаний	.21
Отметки о проведении сервисных работ	. 22

Содержание

Модельный ряд C50 KANN серии PRO

Наименование	Описание	Размеры, мм
CEO KANN PRO 6 STANDART/MIDDLE	5-6 человек Ввод до 70-110 см	D1400/H2000 Производительность 1м ³ /сутки
CEO KANN PRO 8 STANDART/MIDDLE	7-8 человек Ввод до 70-110 см	D1600/H2000 Производительность 1.5м ³ /сутки

1. Общие сведения и назначение

Станция глубокой биологической очистки бытовых сточных **КANN серии PRO** (далее по тексту станция/очистное сооружение) предназначена для полной биологической очистки хозяйственно-бытовых сточных вод в индивидуальных системах водоотведения коттеджей, загородных домов, отдельно стоящих зданий, объектов инфраструктуры и прочих децентрализированных систем канализации.

На станциях реализуется экологически чистая технология биологической очистки сточных вод биоценозами автотрофных и гетеротрофных микроор ганизмов, действующих в аэробных и анаэробных условиях, с стабилизацией избытков ила с последующими процессами доочистки.

Все конструктивные элементы станции выполнены из коррозийно-стойкого материала – полиэтилена. Корпус выполнен на базе спиральновитой трубы с толщиной стенки от 30мм. Сварка изделия производится при помощи стыковой и экструзионной сварки, обеспечивающей высокую прочность сварных швов.

Станция представляет собой цилиндрическую емкость, разделенную на 6 (шесть) технологических камер/зон, соединенные между собой самотечными переливами, а также предустановленными эрлифтами. Отведение очищенной воды осуществляется самотёчно или при помощи насосного колодца. (насо сный колодец в комплект не входит).

Подача воздуха, обеспечивающая работу аэраторов и эрлифтов, обеспечивается постоянно работающим мембранным компрессором (JECOD/JEBAO). Компрессор располагается в герметичной камере в верхней точке очистного сооружения, выше максимального уровня воды.

Станции изготовлены в соответствии с требованиям **ГОСТ 25298-82** Установки компактные для очистки бытовых сточных вод.

CEPUN PR

Перечень допустимых параметров входящих стоков в станции

Наименование показателя	Значение после очистки, мг/л	Допустимые значения, мг/л
рН	6,5–8,5	6,5–8,5
Взвешенные вещества	_	100–260
БПК ₅	5–15	100–240
ХПК	55	300–450
Азот аммонийный	3,0	18–33
Жиры	-	0-20
СПАВ	1	0–10
Токсичные и ядовитые вещества	-	Отсутствуют в стоках

Примечание:

Температура сточных вод, поступающих в станцию, должна быть не менее +10 °C.

Объем сточных вод, поступающих в станцию, должен соответство вать ее производительности.

Конструкция станции рассчитана на равномерное поступление сточных вод в течение суток.

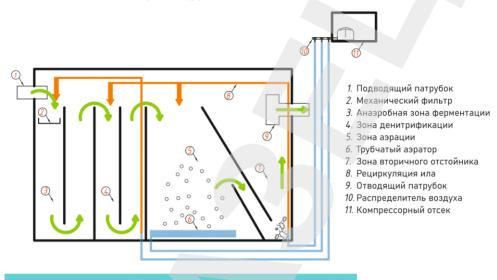
В случае поступления сточных вод в объеме, не соответствующем производительности станции, и имеющих концентрации загрязняю щих веществ, не соответствующие ТКП 45-4.01-56-2012 организацияизготовитель снимает с себя ответственность за качественные показа тели очищенной воды.

Разрешен сброс очищенных на станциях биологической очистки бытовых сточных вод на рельеф местности (в пределах участка частного домовладения) и в водные объекты при соблюдении требований СанПиН 2.1.2.12-33-2005.

Очистные сооружения не дают вредных выбросов в атмосферу.

2. Принцип работы станции

Сточные воды по подводящему коллектору самотеком попадают в сооружение биологической очистки, состоящий из последовательных камер, соединённых между собой. В первой камере происходит механическая очистка. Далее сток проходит через зону ферментации и денитрификации по вертикально-проточному лабиринту.


Следующий этап очистки, это зона аэрации. Здесь сточная вода, смешанная с активным илом, насыщается кислородом, необходимым для жизнедеятельности бактерий. После чего сток поступает во вторичный отстойник где происходит отделение активного ила от очищенного стока,

KΔNN

ил удаляется из отстойника на дальнейшую переработку при помощи эрлифта, а очищенный сток через отводящий трубопровод за пределы станции.

*Сервисное обслуживание необходимо производить не реже 1 раза в 1-2 года, данная процедура влияет на качество очищаемых стоков.

3. Основные параметры и характеристики

Станции биологической очистки бытовых сточных вод **KANN серии PRO** имеют производительность очистки от 1 до $1,5~{\rm M}^3$ в сутки.

При выборе модели станции необходимо учитывать:

- число пользователей, объем сточных вод в сутки;
- объем залпового сброса;
- глубину выхода канализационной трубы из дома;
- расстояния от строения до станции и от станции до места сброса очищенных сточных вод;
- тип грунта;
- планируемый способ водоотведения;
- необходимость системы обеззараживания, фильтра доочистки;
- наличие в доме фанового стояка.

3.1. ПОДБОР МОДЕЛИ СТАНЦИИ МОДЕЛЬНОГО РЯДА KANN СЕРИИ PRO

Выбор производительности станции

Производительность станции определяется количеством сточных вод (м3) в сутки. Расчет принято производить относительно количества постоянных

пользователей. Нормы расхода воды на одного пользователя (потребителя) определены в ТКП 45-4.01-56-2012. Для жилых домов с горячим и холодным водопроводом и канализацией с ваннами норма расхода воды в среднем в сутки на одного пользователя составляет 150-200 литров. Чтобы определить производительность станции необходимо цифру максимального количества пользователей умножить на водопотребление одного пользователя в сутки. Например, станция «KANN PRO 6» для обслуживания 6 человек имеет производительность 1000 л в сутки (1м3 / сут.)

Существует и более сложный способ расчета производительности станций по расходу воды приборами. Нормы для таких расчетов также приведены в СН 4.01.02-2019.

Выбор глубины подключения

Станции отличаются по уровню врезки подводящей канализационной трубы в зависимости от глубины залегания выходящей трубы из дома и расстояния, на котором будет располагаться станция.

Станция **KANN серии PRO** имеет 2 варианта глубины входного патрубка: STANDART – до 70 см, MIDDLE – до 110 см.

При заглублении подводящей канализационной трубы ниже 1,1 м станции могут комплектоваться канализационной насосной станцией (КНС).

3.2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Станции стандартной комплектации

Модель KANN PRO	Число жите- лей	Расход, л/сут	Залповый сброс, л	Диаметр, мм	Общая высота, мм	Толщина стенки, мм	Потре- бление энергии, Вт/ч	Bec, кг
6	5-6	1000	200	1400	2300	30	25	≈250
8	7-8	1500	300	1600	2300	30	38	≈290

3.3. ВАРИАНТЫ ОТВЕДЕНИЯ ОЧИЩЕННОЙ ВОДЫ

Варианты отведения очищенной воды обусловлены различными типами грунта на месте монтажа очистных станций. Основные способы водоотве дения:

- Самотечное водоотведение в ливневую канаву.
- Принудительное водоотведение при помощи встроенного насоса.

- Самотечное водоотведение в железобетонный колодец.
- Самотечное водоотведение в поле фильтрации.
- Принудительное водоотведение в поле фильтрации.
- Водоотведение в резервуар KANN серии N для повторного использования.

Детальную информацию по выбору типа и устройству системы водоотве дения очищенной воды уточняйте в уполномоченной подрядной организации, осуществляющей монтаж систем автономной канализации.

ВНИМАНИЕ!

Не допускается сброс очищенной воды самотеком на открытые поверх ности грунта, т.к. это обязательно приведет к намерзанию льда на выходе и в конечном итоге заблокирует выход чистой воды, и как результат, к переполне нию станции.

Для принудительного сброса воды на поверхность земли необходимо, чтобы напорная труба от станции очистки либо от насосного колодца была-уста новлена с уклоном в сторону станции/колодца не менее 3-5 см. на метр. При нахождении объекта в природоохранной, водоохраной зоне и в черте города для улучшения характеристик очищенной воды на станции применяется блок доочистки и обеззараживания.

4. Инструкция по монтажу

Перед началом монтажа

Монтаж и запуск в эксплуатацию станции должен осуществляться согласно проектной документации или рекомендациям уполномоченной подрядной организацией, с соблюдением всех правил монтажа, указанных в настоящем техническом паспорте с учётом требований строительных норм и правил.

Лица, выполняющие монтаж, должны знать и соблюдать правила прокладки наружных канализационных трубопроводов в соответствии с нормами ТКП 45-4.01-56-2012, соблюдать правила пожарной и электре безопасности.

Перед началом работ обратите внимание на следующее:

- на наличие на объекте монтажа фильтров очистки питьевой воды (обезжелезивания и умягчения), т.к. слив продуктов их регенерации в очистную систему **ЗАПРЕЩЕН!**
- В процессе эксплуатации станции выделяются неприятные запахи (газы),
 т.к. в технологическом процессе преобладают аэробные процессы,
 происходит постоянная продувка стока аэрацией. Газы из станции
 движутся по подводящей трубе к дому и удаляются через фано

вый стояк. Наличие фанового стояка в доме обязательно! При отсутствии фанового стояка, газы могут выходить из-под крышек станций и создавать дискомфорт для проживающих;

- в соответствии с ТКП 45-4.01-56-2012 при монтаже станции необходимо предусмотреть вытяжную вентиляцию через стояк внутренней канализации здания (фановый стояк) или по рекомендации организации-изготовителя;
- фановый стояк канализации должен быть выведен непосредственно на крышу здания. Над стояком необходимо предусматривать вытяж ную часть, которая должна быть выведена на кровлю на высоту не менее 0,3 м;
- не допускается совмещение шахт канализационного и вентиляцион ного стояков;
- не рекомендуется производить монтаж станций в периоды отрица тельных температур ниже -15°C.

4.1. MOНТАЖ СТАНЦИЙ KANN СЕРИИ PRO

Станции работают практически бесшумно. Всё это позволяет монти ровать станции вблизи строений. Для установок небольшой произведи тельности (до 2 м³/сутки) нет необходимости монтажа установки вблизи подъездных путей, для её обслуживания илососная машина не нужна. Для установок большей производительности, в случае отсутствия места для компостирования отработанного ила, рекомендуется предусмотреть подъездные пути для илососной машины. Как правило, илососная машина имеет шланг длиной 10-20 м.

Перед началом земляных работ необходимо определить место входа подводящей канализационной трубы в станцию для соответствующей ориентировки приемной камеры станции (для наименьших изгибов подводящей канализационного трубопровода) в соответствии с монтажной схемой.

1. На выбранном участке местности производится разметка котлована согласно монтажной схеме.

Размер котлована рассчитывается по формуле:

Диаметр котлована = диаметр корпуса станции + не менее 500 мм;

Ширина котлована = ширина корпуса станции + не менее 500 мм;

Глубина котлована = общая высота станции с крышкой минус 100 мм (крышка станции должна быть выше уровня земли на 10 сч) и минус 200 мм (толщина песчаной подготовки под станцией).

Котлован рекомендуется засыпать вручную. Стенки котлована должны выполняться с откосами с уклоном не менее i=1:0,67. Перекопка грунта

в основании котлована не допускается. Если котлован выкопали на глубине больше нормы, то выравнивать дно необходимо песком с послойной трамбов кой и проливом водой. Лишний грунт (в объеме станции) вывозится или переме - щается в отвал, место которого определяет Заказчик.

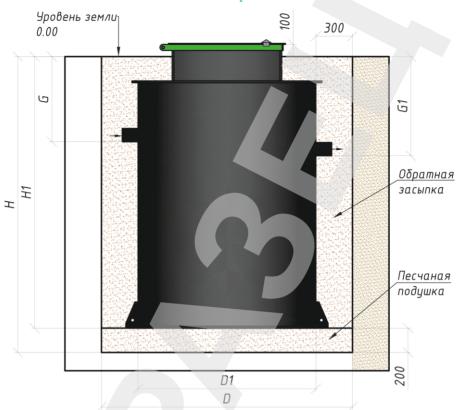
На дне котлована выполняется засыпка и уплотнение песчаной подготовки толщиной 50-100 мм.

При условиях высокого УГВ монтаж станций рекомендуется выполнять на армированную бетонную плиту толщиной не менее 150 мм., фиксацию станции к плите осуществлять при помощи стяжных полипропиленовых ремней.

- 2. Станция доставляется на максимально близкое расстояние к месту монтажа. Разгрузка и спуск в котлован производится вручную или с примене нием спецтехники.
- 3. Корпус станции устанавливается горизонтально по центру котлована вруч ную или с применением спецтехники так, чтобы оставался зазор 250-500мм мм между стенками станции и стенками котлована для обратной засыпки. Произ водится выравнивание корпуса с помощью строительного уровня для точного горизонтального положения прибор необходимо устанавливать непосред ственно на корпус станции (не на горловины). Крен более чем на 10 мм между краями корпуса станции недопустим!
- 4. Обратная засыпка котлована осуществляется песком, который не должен содержать щебня, гравия и камней либо цементно-песчаной смесью в соотношении 1:5. Обсыпка производится с послойным уплотнением через каждые 200 мм и проливом водой каждого слоя до уровня подведенной к станции канализа ционной трубы. Обсыпка сопровождается одновременным заполнением камер станции до рабочего уровня. Подавать воду для заливки можно с помощью шланга через горловину. При заполнении необходимо обеспечивать равно мерный набор воды во всех камерах параллельно, не допуская перепада воды между камерами более чем на 150-200 мм. Обратная засыпка станции без воды ЗАПРЕЩЕНА!
- 5. В траншее подводящего трубопровода производится подведение к станции электрического кабеля марки ПВС (электрический кабель прокладыва ется в трубе ПНД Ø20-50 мм). На фазовый провод устанавливается автомат из расчета: 1А в случае самотечного водоотведения; 6А в случае принудительного водоотведения.
- 6. Утепление корпуса при необходимости производится жесткими гидро фобными видами утеплителя на глубину промерзания грунта. Толщина утепле ния зависит от климатических условий района строительства.

7. Завершающая засыпка трубопроводов и котлована осуществляется вручную песком. Оставшаяся часть высотой 100 мм засыпается естественным грунтом. Размещение тяжелых предметов и передвижение спецтехники над станцией ЗАПРЕЩЕНО!

- 8. Для запуска станции необходимо подключить питающий кабель типа ПВС 0,5-1 мм2 к блоку управления, который находится в верхней части горловины станции. Вод кабеля в отсек компрессора производится через сальник РG-9 (см. схему станции). Далее вилку компрессора необходимо подключить в розетку. Подсоединение электрического кабеля к источнику питания необходимо произвести через отдельный автомат, соответствующий мощности компрессора (компрессора и дренажного насоса для станции с принудительным водоотведением).
- 9. Установка компрессора/аэратора, подсоединение электрического кабеля к розетке. Включение очистной станции и проверка её работоспособности.


Использование стабилизации напряжения ОБЯЗАТЕЛЬНО. В случае отсутствия стабилизации напряжения гарантия на компрессор/аэратор не распространяется! Производитель в праве отказать в выполнении гаран тийных обязательств, в случае выхода компрессора/аэратора из строя, при отсутствии у покупателя документа, подтверждающего покупку стабилизатора напряжения.

- 10. Окончательная планировка рельефа производится с учётом следующих факторов:
 - Любые виды заглубления крышки ниже уровня земли ЗАПРЕЩЕНЫ;
 - При засыпке станции убедиться в том, что верхняя точка крышек находится выше уровня земли на 100 мм;
 - К крышке, под которой находится аэратор, должен быть обеспе чен приток свежего воздуха. Забор воздуха в аэратор производится через дефлектор в крышке (см. схему работы станции).

4.2. МОНТАЖНАЯ СХЕМА СТАНЦИИ KANN СЕРИИ PRO

	Размерн	зя таблі	јца, мм		
Модель	Н	D	H1	D1	G / G1
KANN PRO 6 STANDART	2430	2060	2230	1460	700 / 815
KANN PRO 6 MIDDLE	2830	2060	2630	1460	1100 / 1215
KANN PRO 8 STANDART	2430	2260	2230	1660	700 / 815
KANN PRO 8 MIDDLE	2830	2260	2630	1660	1100 / 1215

4.3. ОСОБЕННОСТИ МОНТАЖА СТАНЦИЙ ПРИ ВЫСОКОМ УРОВНЕ ГРУНТОВЫХ ВОД

При отсутствии возможности выкопать котлован на нужную глубину из-за высокого уровня грунтовых вод, раскопку котлована необходимо производить с опалубкой.

Размер котлована рассчитывается по формуле:

Диаметр котлована = диаметр корпуса станции + 700 мм;

При необходимости (при невозможности копания на заданную глубину по причине обрушения стенок котлована) одновременно с копкой котлована в него вертикально по периметру устанавливается опалубка.

В случае поступления в котлован большого количества воды, для её откачки на дно котлована устанавливается дренажный насос.

После установки и выравнивания станции в котловане СРАЗУ (!) необходимо быстро заполнить станцию водой на половину уровня для того, чтобы предотвратить ее всплытие.

Между опалубкой и станцией засыпается песок. Обратная засыпка станции без воды **ЗАПРЕЩЕНА!** Опалубка не демонтируется.

4.4. ПОДКЛЮЧЕНИЕ СТАНЦИЙ К КАНАЛИЗАЦИОННОЙ СЕТИ

Выполнение подводящих коммуникаций и отведение очищенной воды следует осуществлять в соответствии с рекомендациями организации-из готовителя или продавца и проектом привязки станции к местности.

Подводящий самотечный трубопровод сточных вод укладывается (в утеплителе при необходимости) на песчаную подушку с уклоном 1,5-2 см на метр в сторону станции.

На малых глубинах (до 1 м) канализационная труба, выходящая из дома, не требует утепления на расстояниях до 10 метров, поскольку температура сточных вод выше 0°С, и по канализационной трубе производится отвод отработанного воздуха из станции, температура которого так же выше 0°С.

Диаметр подводящего самотечного трубопровода зависит от удаления очистной станции от объекта канализации:

- до 30 м используется труба ПВХ диаметром 110 мм;
- до 100 м используется труба ПВХ диаметром 160 мм.

Допускается превышение указанных расстояний с обязательной уста новкой ревизионных колодцев:

- для трубы ПВХ диаметром 110 мм через каждые 15 м;
- для трубы ПВХ диаметром 160 мм через каждые 25 м.

Отводящий самотечный или напорный трубопроводы прокладываются согласно правилам для соответствующей модели станции.

Напорный трубопровод прокладывается с контруклоном не менее 5-7 см/м (диаметр трубопровода не менее 32 мм). Контруклон обеспечивает отсутствие остатка воды в трубе и соответственно промерзания отводящей канализации в период зимней эксплуатации.

V® CEPUN PRO

В случаях, когда длина напорного трубопровода превышает 15 м, необхо димо на выходе из насосного колодца заглубить трубопровод ниже глубины промерзания грунта (1,3-1,5 м). В этом случае длина напорного трубопровода может быть длинной (более 100 м) и ограничена только мощностью (напором) дренажного насоса.

5. Ввод станции в эксплуатацию

5.1. ОБЩИЕ ПОЛОЖЕНИЯ

В процессе монтажа станцию заполняют водой полностью до рабочего уровня. Рабочий уровень станции **KANN серии PRO** определяется нижней точкой отводящего патрубка. После заполнения станции водой можно производить запуск компрессора и вводить станцию в эксплуатацию.

В случае отсутствия возможности принудительного введения в аэротенк активного ила из другой станции очистки, выход станции на штатный режим работы длится приблизительно 3-4 недели при проживании номинального коли - чества пользователей.

Первый активный ил, в большинстве случаев коричневого цвета, появляется после 10 дней работы. В течение последующего периода ил в аэротенке сгущается и в большинстве случаев его цвет приобретает темно-бурый оттенок. При этом имеет место ещё большее улучшение эффективности очистки и качества сточных вод на выходе из станции. У правильно работающей станции вода на выходе прозрачная и практический без запаха.

Во время образования густого ила (первые 14-30 дней) имеет место значительное пенообразование. Основной причиной этого является приме нение поверхностно-активных веществ в составе бытовой химии. Пена постепенно исчезает с повышением концентрации ила в аэротенке. Во время накопления активного ила (1 месяц) желательно сократить исполь зование химических средств в домашнем хозяйстве (для посудомоечных и стиральных машин).

5.2. НАСТРОЙКА СТАНЦИИ

Для настройки станции необходимо произвести настройку ее воздушной сети путем регулировки 4-х кранов, расположенных на вертикальном распреде - лителе. Регулировка кранов производится поочередно снизу вверх, начиная с самого нижнего: 1. Полностью открыть основной кран аэрации (самый нижний) 2. Жировый и иловый эрлифт (следующие 2 крана) отрегулировать таким образом, чтобы была достигнута скорость перекачки стока со скоростью 3-5 л/мин., при этом должна сохраняться интенсивность аэрации. 3. Кран дополнительной аэрации (самый верхний) повернуть под 45° от положения «закрыто».

Схема (будет такая же как в серии ультра пункт 5.2)

5.3. ОЦЕНКА РАБОТЫ СТАНЦИИ ПО КАЧЕСТВУ ВОДЫ

При правильной работе станции вода на выходе прозрачная, чистая и без неприятного запаха.

Окончание времени ввода станции в эксплуатацию и её правильная работа определяется отбором пробы активационной смеси в режиме аэра - ции в аэротенке в стеклянную ёмкость вместимостью примерно 1 литр. Активационной смеси дают отстояться в течение примерно 20-30 минут, по истечении этого времени на дне емкости осаждается активный ил, а над ним появляется слой очищенной воды. Линия раздела очищенной воды и ила должна быть отчетливо видна. Ил должен иметь объем примерно 20 % от объема пробы, остальной объем должна занимать чистая вода. Тогда станция работает в номинальном режиме и достаточно устойчива к химиче - ским средствам, используемым в домашнем хозяйстве. Если ила меньше, процесс ввода станции не окончен, или станция недостаточно загружена сточными водами. Если ила больше, не происходит надлежащее его удаление — значит станция перегружена.

При наличии фильтра доочистки, его подключение необходимо выпол нить через байпас во избежание засорения недостаточно очищенной водой в течение начального периода работы станции.

Мутная вода на выходе из станции

В данном случае речь идет о наличии коллоидных частиц в очищенной воде. Обычно это происходит в ходе ввода станции в эксплуатацию, пока не образуется достаточное количество активного ила или не стабилизируются процессы биологической очистки.

Следующей причиной может быть изменение качественных характери стик сточных вод, например, пониженное pH, резкое падение температуры, химическое загрязнение (случай интенсивной стирки белья или при применении агрессивных моющих средств и т.п.), несоответствие количества стоков номинальной производительности станции , малое поступление фекальных стоков, гидравлическая перегрузка станции, нехватка кисло рода воздуха (которая может быть вызвана повреждением воздушной распределительной сети, неправильной настройки эрлифтов).

Отбор проб

При необходимости выполнения анализа входящих хозяйственно-фе кальных стоков и выходящей очищенной воды обращайтесь в санитарно-э - пидемиологическую службу.

*Во время эксплуатации станции необходимо производить плановые работы согласно регламенту, рекомендованному производителем.

6. Особенности зимней эксплуатации станции

Штатный зимний режим

Корпус станции имеет двойные стенки и обладает высокими теплоизоляци онными характеристиками. Технологическая крышка дополнительно теплоизолирована.

Внутри Станции происходят процессы окисления с выделением тепла. При темпера- туре наружного воздуха не ниже –25 °С и наличии не менее 20 % паспортного притока хозяйственно-фекальных стоков, Станция не требует никаких специальных зимних профилактических мероприятий.

Для регионов с частым понижением температуры более –25 °C рекоменду ется принять меры для предотвращения замерзания в зимних условиях. Это можно сделать при монтаже несколькими способами:

- установить компрессор в отапливаемом помещении для подачи теплого воздуха в Станцию;
- принять меры по дополнительной теплоизоляции корпуса и горловин (для этого применяются утепленные крышки, которые устанавливаются поверх Станции).

6.1. «КОНСЕРВАЦИЯ» НА ЗИМНИЙ ПЕРИОД

Данное мероприятие проводится при условии отсутствия поступления в станцию стоков в период более 3-х месяцев и сезонной работе станции.

При «консервации» станции необходимо:

- отключить компрессор от электропитания, демонтировать его и хранить в теплом, сухом месте;
- отключить станцию от источника электропитания;
- из всех камер станции откачать одну треть воды в случае, когда расстояние от уровня земли до рабочего уровня воды в станции менее 1 метра.

* Во избежание «всплытия» полная откачка содержимого станции ЗАПРЕЩЕНА!!!

В ПЕРИОД «КОНСЕРВАЦИИ» В СТАНЦИЮ НЕ ДОЛЖНЫ ПОСТУПАТЬ СТОКИ!

При запуске станции в эксплуатацию необходимо:

- произвести сервисное обслуживание;
- заполнить водой до рабочего уровня все камеры станции;
- смонтировать и подключить компрессор в станцию;
- подключить станцию к источнику электропитания;
- произвести проверку работоспособности эрлифтов и аэраторов.

7. Рекомендации по эксплуатации станции

Организация эксплуатации любой станции, на которой осуществляется биологическая очистка, основана на жизнедеятельности живых микроор ганизмов. Основной участник процесса биологической очистки – актив ный ил. Если возникают условия, неблагоприятные для развития, роста и особенно питания живого организма, то качество очистки ухудшается.

Для предотвращения возникновения вышеуказанной ситуации необхо димо соблюдать культуру пользования сантехническими узлами и канали зационной сетью.

ЗАПРЕШАЕТСЯ:

- сброс в канализацию строительного мусора, песка, цемента, изве сти, строительных смесей и прочих отходов строительства;
- сброс в канализацию полимерных материалов и других биологиче ски не разлагаемых соединений (в эту категорию входят средства контрацепции, гигиенические пакеты, фильтры от сигарет, пленки от упаковок и тому подобное);
- сброс в канализацию нефтепродуктов, горюче-смазочных материалов, красок, растворителей, антифризов, кислот, щелочей, спирта и тому подобного;
- сброс в канализацию бытового, садового мусора, удобрений и прочих отходов садоводства;
- сброс в канализацию мусора от лесных грибов, пищевых отходов (остатков еды, мусора от очистки овощей и фруктов);
- сброс в канализацию большого количества масла/жира (например, из фритюра);
- сброс в канализацию промывных вод фильтров бассейна, содер жащих дезинфицирующие компоненты (озон, активный хлор и им подобные);
- сброс в канализацию промывных (регенерационных) вод от установок подготовки и очистки воды с применением марганцево-кислого калия или других внешних окислителей;

- сброс в канализацию стоков после регенерации систем очистки питье вой или котловой воды, содержащих высокие концентрации солей. Это приводит к осмотическому шоку очищающих микроорганизмов, резкому ухудшению качества очистки воды и даже полному отмиранию актив ного ила:
- сброс в канализацию большого количества стоков после отбелива ния белья хлорсодержащими препаратами («Персоль», «Белизна» и им подобными);
- применение чистящих средств, содержащих хлор и другие антисептики, в больших количествах, это может привести к отмиранию активного ила, и как следствие – потере работоспособности станции;
- сброс в канализацию лекарств и лекарственных препаратов;
- сброс в канализацию шерсти домашних животных;
- применение антисептических насадок с дозаторами на унитаз.

НА НЕИСПРАВНОСТИ, ВЫЗВАННЫЕ НАРУШЕНИЕМ ЭТИХ ПУНКТОВ, ГАРАНТИЯ НЕ РАСПРОСТРАНЯЕТСЯ.

Разрешается сброс в канализацию:

- мягкой, легко разлагающейся туалетной бумаги;
- стоков стиральных машин, при условии применения стиральных порошков без хлора (по рекомендации организации-изготовителя);
- кухонных стоков с использованием моющих средств без хлора (по реко мендации организации-изготовителя);
- душевых и банных стоков;
- небольшого количества средств для чистки унитазов, сан. фаянса и кухонного оборудования 1 раз в неделю (по рекомендации организаци и-изготовителя).

Для эффективной работы станции необходимо не только избегать отрав ления её химическими препаратами, но и стараться активизировать течение биологических процессов, а именно:

• использовать современные моющие, чистящие, дезинфицирующие средства без фосфатов, в состав которых входят биологически разла гаемые компоненты;

- производить уборку, стирку, чистку и другие работы не одновременно, чтобы не допускать массового сброса химических веществ в станцию;
- допускается использование биопрепаратов согласно инструкции производителя

8. Техническое обслуживание

Станция биологической очистки сточных вод **KANN серии PRO** полностью автоматизирована и не требует ежедневного обслуживания. Для поддержания работоспособности станции требуется лишь время от времени производить перечень нижеуказанных мероприятий:

- один раз в год необходимо откачать ил из камер 3 и 4 илососной машиной или дренажным насосом. Процедура не требует специаль ных знаний и занимает 5-10 минут. Ил находится в аэробно-стабили зированном состоянии, не имеет неприятного запаха, что позволяет использовать его в качестве удобрения.
- не менее одного раза в 3 месяца необходимо извлекать и очищать фильтр механической очистки.
- промывка/продувка эрлифтов 1 раз в 6-12 месяцев, а также по мере их засорения.
- один раз в 5 лет полная очистка и промывка станции, проверка аэрационных элементов, замена компрессора аэратора.
- один раз в полгода прочистка фильтра компрессора/аэратора.
- один раз в 10 лет замена аэрационных элементов.
- один раз в 5 лет замена компрессора/аэратора.
- один раз в 2-3 года замена мембран компрессора/аэратора (при потере рабочего давления).

Внимание! Пренебрежение данными правилами может послужить причиной переполнения станции и выброса неочищенных сточных вод.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийные обязательства распространяются на оборудование, на которое имеется должным образом оформленный **гарантийный сертификат,** заверенный печатью торговой организации, а также сведения о продаже и вводе оборудования в эксплуатацию.

Правом гарантийного ремонта обладают первый, а также последующий владельцы оборудования, если его перепродажа осуществлялась в пределах установленного гарантийного срока.

Гарантийный срок на станции биологической очистки (далее станции) составляет **36 месяцев** от даты продажи торговой организацией.

Гарантия на электрооборудование, входящее в состав станции, распространяется только при условии соблюдения требований к подаче электроэнергии, указанных в техническом паспорте.

Гарантийный срок на компрессорное оборудование составляет **12 месяцев** от даты продажи торговой организацией. Сменные фильтровальные детали компрессора, мембраны и предохранители не попадают под условия гарантии, как элементы, подверженные износу при нормальной эксплуатации. Затопление сточными водами компрессора не является гарантийным случаем.

Гарантийные обязательства на дренажные и фекальные насосы, входящие в состав оборудования Подрядчика, исполняются официальными поставщиками (сервисными центрами) данного оборудования. Гарантийный срок определяется гарантийным талоном данного оборудования. Снятие/замена и доставка данного типа оборудования в сервисные центры осуществляется силами Заказчика.

Торговая организация не несет ответственности за неисправности, вызванные неправильной транспортировкой, не соблюдением правил монтажа и ввода оборудования в эксплуатацию.

Гарантия не распространяется на неисправности, возникшие в результате механических повреждений, несоблюдения правил эксплуатации или инструкций по тех. обслуживанию, самостоятельного ремонта или изменения устройства, неправильного подключения оборудования.

Торговая организация не компенсирует расходы, связанные с демонтажом гарантийного оборудования, а также ущерб, нанесенный другому оборудованию, находящемуся у владельца, в результате неисправностей (или дефектов), возникших в гарантийный период.

В случае поступления сточных вод в объеме, не соответствующем производительности станции, и имеющих концентрацию загрязняющих веществ, не соответствующую перечню допустимых параметров входящих стоков, указанному в техническом паспорте, производитель снимает с себя ответственность за качественные показатели очищенной воды.

Изготовитель гарантирует бесплатное устранение возникающих по его вине технических неисправностей станции при соблюдении правил транспортировки, хранения, монтажа, и эксплуатации.

ГАРАНТИЙНЫЙ СЕРТИФИКАТ

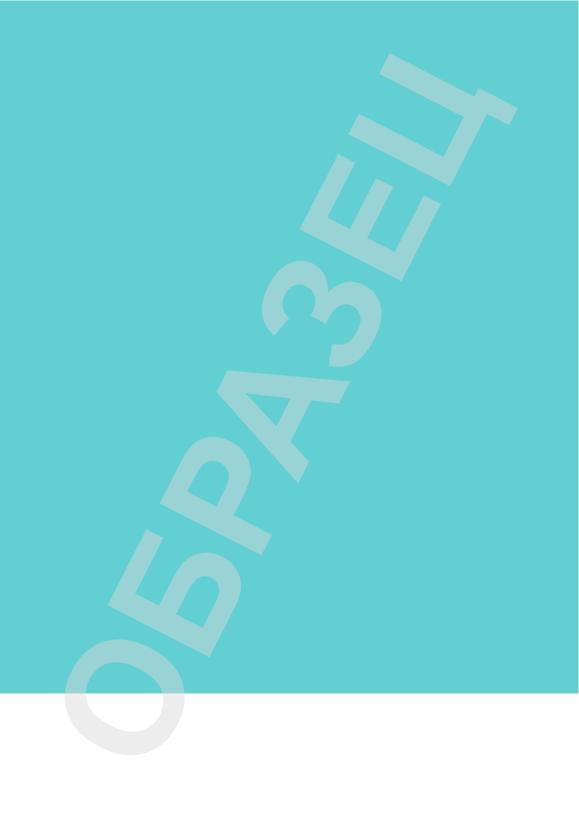
Модель станции КА Дата отгрузки:		
Комплектация		Наличие
Компрессор (аэратс	pp):	
Насосный колодец (KHC):	
Насос дренажный (с	рекальный):	
Технический паспор	Т	
Примечание:		
Производитель:	Монтаж произв	овиями ознакомлен)
М.П	М.П	 7

ПРОТОКОЛ ИСПЫТАНИЙ

Тип замечаний	Проверено
Качество сварных швов	
Проверка воздушной сети	
Наличие сальников, розетки	
Наличие отверстий притока воздуха	
Проверка качества изготовления крышек (гладкий кант, утепление)	
Проверка наличия информационных наклеек (вход, выход, информация о производителе)	
Чистый внешний вид оборудования	

Производитель: ООО «КАНТЕХПРО»	
Контроль качества произвел:	
Начальник цеха	

За справочной информацией обращаться по телефону: •••375-29-660.01 74;



CEPUN PRO

ANN®

ОТМЕТКИ О ПРОВЕДЕНИИ СЕРВИСНЫХ РАБОТ

